The Crystal Structure of Barium Manganese(II) Iron(III) Fluoride $\mathrm{BaMnFeF}_{7}$

HELMUT HOLLER and DIETRICH BABEL*
Sonderforschungsbereich 127 (Kristallstruktur und chemische Bindung) and Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, D 3550 Marburg, West Germany
and MAURICE SAMOUËL and ARIEL de KOZAK
Laboratoire de Chimie Minérale, E. R. No. 9 CNRS, Université
Pierre-et-Marie-Curie, tour 54, 4, place Jussieu, F 75230 Paris Cedéx 05, France

Received March 12, 1981

Abstract

The crystal structure of the monoclinic compound $\mathrm{BaMnFeF}_{7}$ has been determined: $a=553.2(1), b=$ $1098.0(2), c=918.3(1) \mathrm{pm}, \beta=94.67(1)^{\circ}, V=555.9(3) \times 10^{-24} \mathrm{~cm}^{3}, Z=4$. All atoms are in general positions of space group $P 2_{1} / c$, weighted $R=0.031$, using 1771 independent single-crystal reflections with $I>2 \sigma(I)$. The structure consists of edge-sharing dinuclear $\mathrm{Mn}_{2} \mathrm{~F}_{10}^{6-}$ units ($\mathrm{Mn}-\mathrm{Mn}=322.2 \mathrm{pm}$), linked via corners by intermediate FeF_{6} octahedra, at which two cis ligands remain unbridged. The average distances in the distorted octahedra are $\mathrm{Mn}-\mathrm{F}=211.6 \mathrm{pm}$ and $\mathrm{Fe}-\mathrm{F}=192.7 \mathrm{pm}$. The barium atoms are irregularly 12 -coordinated with a mean distance $\mathrm{Ba}-\mathrm{F}=290.5 \mathrm{pm}$. The structure is discussed in relation to the trigonal weberite $\mathrm{Na}_{2} \mathrm{MnFeF}_{7}$ and others.

Introduction

Interested in the network of octahedra formed by transition metal fluorides of general composition $A_{n} M_{2} \mathrm{~F}_{7}$ ($A=$ alkali or alkaline earth ion), we have recently refined the crystal structures of the compounds $\mathrm{K}_{3} \mathrm{Zn}_{2} \mathrm{~F}_{7} \quad$ (1), $\quad \mathrm{Na}_{2} \mathrm{NiFeF}_{7}$ (2), and $\mathrm{Na}_{2} \mathrm{MnFeF}_{7}$ (3). In the two latter sodium compounds-representatives of the orthorhombic and the trigonal weberites, resp. -the nonbridging anions which are required by the stoichiometry $M: F=2: 7$ occur at the tervalent iron ions only. Pass-

[^0]ing to barium compounds $\mathrm{BaM}^{\mathrm{II}} \mathrm{M}^{\mathrm{II}} \mathrm{F}_{7}$ $(4,5)$, another structural way of realizing this stoichiometry might be found. This includes the possibility of fluoride ions outside the octahedral network and coordinated to barium only. Examples for such separate anions are known from the structures of $\mathrm{Ba}_{2} \mathrm{MF}_{6}=(\mathrm{BaF})_{2} M \mathrm{~F}_{4}$ (6) and $\mathrm{Ba}_{3}\left(\mathrm{AlF}_{6}\right)_{2}=\frac{1}{2} \mathrm{Ba}_{6} \mathrm{~F}_{4}\left(\mathrm{Al}_{4} \mathrm{~F}_{20}\right)(7)$.

From some isostructural monoclinic barium compounds $\mathrm{Ba} M^{\mathrm{I}} M^{\mathrm{II}} \mathrm{F}_{7}$ reported recently $(4,5)$, we chose the manganese iron compound $\mathrm{BaMnFeF}_{7}$ for a complete structure determination (8), because we were interested in its structural relations to the corresponding sodium compound Na_{2} MnFeF_{7} of the trigonal weberite family
(3). In addition this choice seemed useful to compare the magnetic properties of the isoelectronic d^{5} ions Mn^{2+} and Fe^{3+} in both structures, which also may be followed by Mössbauer investigations (8-10).

Experimental

Single crystals of $\mathrm{BaMnFeF}_{7}$ were obtained by heating a dried mixture of stoichiometric amounts of the binary fluorides in sealed platinum tubes for 3 hr at $750^{\circ} \mathrm{C}$ and very slow cooling to $280^{\circ} \mathrm{C}$. Powdered crystals yielded the monocinic lattice constants given in Table I, in good agreement with those previously reported (5). X-Ray photographs of the single crystals showed the systematic absences of the reflections noted in Table I, which also confirmed the assigned space group $P 2_{1} / c(4,5)$. The pyk-
nometric density is in agreement with $Z=4$ formula weights per unit cell.

Some selected single crystals of about 1 mm dimensions, which were translucent and light brown in color, were ground to spheres. One of those spheres was mounted on an automatic four-circle diffractometer Nonius CAD 4 to collect intensity data under the conditions given in Table I. After data reduction ($l l$), correction for absorption (12), and averaging symmetry equivalent measurements, the observed structure factors of 1771 independent reflections were used to solve the structure. All calculations were done at the Telefunkenrechner TR 440 of the Rechenzentrum der Universität Marburg, using the program SHELX 76 (13). Atomic form factors were those of the neutral atoms, as given in parametric form by Cromer and Mann (14).

TABLE I
Lattice Constants of $\mathrm{BaMnFeF}_{7}$ and Conditions of Intensity Data Collection

	$\begin{gathered} a \\ (\mathrm{pm}) \end{gathered}$	$\begin{gathered} b \\ (\mathrm{pm}) \end{gathered}$	$\begin{gathered} c \\ (\mathrm{pm}) \end{gathered}$	$\begin{gathered} \beta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} V \\ \left(\times 10^{24} \mathrm{~cm}^{3}\right) \end{gathered}$
Lattice constants					
This work	553.2(1)	1098.0(2)	918.3(1)	94.67(1)	555.9(3)
Ref. (5)	553.2	1098.5	918.2	94.63	556.2
Density ($\mathrm{g} \mathrm{cm}^{-3}$)	4.65(4) (measured), $4.649(2)$ (calculated with $\mathrm{Z}=4$)				
Space group $P 2_{1} / c$ from systematic absences:	$h 0 l: l \neq 2 n$				
Single-crystal sphere	Radius: $R=0.016 \mathrm{~cm}$				
Absorption (MoK α)	$\mu=113 \mathrm{~cm}^{-1}, \quad \mu R=1.8$				
Range measured	$2^{\circ} \leqq \theta \leqq 32^{\circ}$				
(MoKa, graphite	$0 \leqq h \leqq 8$				
monochromated)	$0 \leqq k \leqq 16$				
	$-13 \leqq l \mid 13$				
Scan conditions	mode : $\omega / \mathbf{2 \theta}$, aperture : $0.8{ }^{\circ}$			日, $t_{\text {max }}=180 \mathrm{sec}$	
Reflections measured					
total	2121				
symmetry independent	1952				
independent and $I>2 \sigma(I)$	1771				

TABLE II
Positional and Thermal Parameters ${ }^{a}$ of the Atoms in $\mathrm{BaMnFeF}_{7}$, All in General Position $4 e$ of Space Group $P 2_{1} / c$

	x	y	z	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
Ba	$0.2290(1)$	$0.1688(<1)$	$0.0417(<1)$	$1.04(1)$	$0.84(1)$	$0.74(6)$	$0.06(1)$	$-0.15(1)$	$0.03(1)$
Fe	$0.6941(1)$	$0.1214(1)$	$0.7657(1)$	$0.58(2)$	$0.77(2)$	$0.58(2)$	$0.00(2)$	$-0.11(2)$	$0.02(2)$
Mn	$0.8111(2)$	$0.0638(1)$	$0.3808(1)$	$0.69(2)$	$0.84(2)$	$0.68(2)$	$-0.02(2)$	$-0.14(2)$	$-0.02(2)$
F1	$0.4088(7)$	$0.2852(4)$	$0.2848(4)$	$1.14(13)$	$1.62(13)$	$0.92(11)$	$-0.21(10)$	$0.06(9)$	$-0.68(11)$
F2	$0.4943(7)$	$0.0275(3)$	$0.2509(4)$	$1.14(13)$	$1.18(12)$	$1.35(12)$	$0.17(10)$	$-0.48(10)$	$-0.36(10)$
F3	$0.1394(7)$	$0.3993(3)$	$0.0091(4)$	$1.18(13)$	$0.96(12)$	$1.48(12)$	$-0.24(9)$	$-0.48(10)$	$0.38(10)$
F4	$0.9822(7)$	$0.4821(3)$	$0.2812(4)$	$0.97(13)$	$1.43(13)$	$1.23(12)$	$-0.09(10)$	$0.03(10)$	$-0.41(10)$
F5	$0.1003(7)$	$0.7365(3)$	$0.2136(4)$	$1.07(13)$	$0.99(12)$	$1.88(13)$	$-0.31(10)$	$-0.02(11)$	$-0.19(10)$
F6	$0.3446(7)$	$0.6457(3)$	$0.9403(4)$	$1.68(14)$	$1.65(13)$	$0.63(10)$	$-0.01(9)$	$0.04(10)$	$-0.30(11)$
F7	$0.7158(7)$	$0.4032(4)$	$0.4747(4)$	$1.64(14)$	$1.86(14)$	$0.68(11)$	$-0.06(10)$	$-0.03(10)$	$-0.28(12)$

[^1]
Structure Determination

In space group $P 2_{1} / c$, No. 14 of International Tables (15), which is the only one in accordance with the systematic absences observed, the general position is fourfold:

$$
4 e \pm\left(x, y, z ; \bar{x}, \frac{1}{2}+y, \frac{1}{2}-z\right) .
$$

All additional four special positions are twofold and have all their coordinates fixed. A three-dimensional Patterson synthesis indicated, that none of these special positions could be occupied. Therefore all atoms of $\mathrm{BaMnFeF}_{7}-10$ in the asymmetric unit-were to be localized in the general position mentioned.

The evaluation of the Patterson in a first step led to the localization of all three cations. A difference Fourier synthesis following the least-squares refinement of these cation positions indicated three out of seven anion sites. Final steps of trial and error, in which octahedral coordination of the transition metal atoms was assumed, revealed the positions of the remaining four fluorine atoms. The refinement at this stage, with isotropic temperature factors and with iron in the smaller octahedral holes, yielded $R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|=$
0.068. Anisotropic refinement improved the result to $R=0.052$. As an inspection of the corresponding F_{0}, F_{c} list now showed some F_{0} values of strong reflections lying considerably lower than their calculated F_{c} counterparts, an extinction correction (16), simplified to $F_{\mathrm{c}}($ corr $)=F_{\mathrm{c}}\left(1-\epsilon F_{\mathrm{c}}^{2} / \sin \theta\right)$, seemed useful. Including refinement of the extinction parameter $\epsilon(13)$ and introducing weights $w=$ prop. $1 / \sigma^{2}\left(F_{0}\right)$ the final residuals were $R=0.033$ resp. $R_{\mathrm{w}}=\Sigma w^{1 / 2}\left(| | F_{\mathrm{o}} \mid\right.$ $\left.-\left|F_{\mathrm{c}}\right| \mid\right) / \Sigma w^{1 / 2}\left|F_{\mathrm{o}}\right|=0.031$ for 1771 independent reflections. The resulting atomic parameters are given in Table II and the structure factors listed elsewhere. ${ }^{1}$

Results and Discussion

Figure 1 shows the $\mathrm{BaMnFeF}_{7}$ structure in a stereoscopic drawing. The details, how
${ }^{1}$ See NAPS document No. 03872 for 10 pages of supplementary material. Order from ASIS/NAPS c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. Remit in advance in U.S. funds only for each NAPS Accession Number. Institutions may use purchase orders when ordering; however, there is a billing charge for this service. Make checks payable to Microfiche Publications. Photocopies are $\$ 7.75$. Microfiche are $\$ 4.00$. Outside of the U.S. and Canada, postage is $\$ 3.00$ for a photocopy or $\$ 1.50$ for a fiche.

Fig. 1. Stereoscopic view of the $\mathrm{BaMnFeF} \mathrm{F}_{7}$ structure. To show the network of octahedra four unit cells are drawn.
the octahedra are linked to form the threedimensional network shown, may be seen from Figs. 2 and 3. The interatomic distances and angles are given in Table III.

All anions in the $\mathrm{BaMnFeF}_{7}$ structure are part of the coordination sphere of the transition metal ions, just as is the case in the weberites $\mathrm{Na}_{2} M^{\mathrm{I}} \mathrm{M}^{\mathrm{II}} \mathrm{F}_{7}$. There are also two

Fig. 2. FeF_{6} octahedron in the $\mathrm{BaMnFeF}{ }_{7}$ structure, linked to three binuclear $\mathrm{Mn}_{2} \mathrm{~F}_{10}$ groups only.

Fig. 3. Binuclear $\mathrm{Mn}_{2} \mathrm{~F}_{10}$ group, linked to six FeF_{6} octahedra in the structure of $\mathrm{BaMnFeF}_{7}$.
terminal ligands in cis position of the FeF_{6} octahedron, as found for one of the two iron sites in the $\mathrm{Na}_{2} \mathrm{MnFeF}_{7}$ structure (3). But contrary to the infinite chains of trans corner-sharing $M^{\mathrm{I}} \mathrm{F}_{6}$ octahedra in the weberites the MnF_{6} octahedra in $\mathrm{BaMnFeF}_{7}$ form separated dinuclear units $\mathrm{Mn}_{2} \mathrm{~F}_{10}$ by edge-sharing.

As demonstrated in Fig. 2, the FeF_{6} octahedra are isolated from each other, but each is connected via corners to three of these binuclear groups $\mathrm{Mn}_{2} \mathrm{~F}_{10}$. One of these groups is linked by two fluorine atoms, F4 and F6, in cis position of the FeF_{6} octahedron. The opposite cis ligands F1 and F7 of this octahedron are those, which do not participate in linking.

The $\mathrm{Mn}_{2} \mathrm{~F}_{10}$ units are also isolated from each other. In Fig. 3 it is shown, how they are connected via all their free corners to six FeF_{6} octahedra, two of which are linked twice in such a way, that they additionally bridge the binuclear $\mathrm{Mn}_{2} \mathrm{~F}_{10}$ groups by the cis bonds mentioned. This kind of arrangement is also found in the rutile structure, from which this detail of the $\mathrm{BaMnFeF}_{7}$ structure is a section. The $\mathrm{Mn}-\mathrm{Mn}$ distance of 322.2 pm in the edge-sharing unit, how-

TABLE III
Interamtomic Distances and Angles in the $\mathrm{BaMnFeF}_{7}$ Structure

ever, is considerably smaller here than that of 330.9 pm in the rutile structure of MnF_{2} (17). This shortening against electrostatic repulsion is caused by the bridging FeF_{6} octahedra being much smaller than the MnF_{6} octahedra, which they clamp together.

The mean distances $\mathrm{Fe}-\mathrm{F}$ in $\mathrm{BaMnFeF}_{7}$ are about the same as in the corresponding octahedron of $\mathrm{Na}_{2} \mathrm{MnFeF}_{7}$ (in parentheses): 191.8 (191.8) pm for the cis terminal bonds and 193.2 (193.9) pm for the
bridging ones. The overall average distance $\mathrm{Fe}-\mathrm{F}=192.7$ (193.2) pm also agrees very well with the distances reported for quite different structures such as 192.8 pm for CsFeF_{4} (18), $\mathrm{K}_{2} \mathrm{FeF}_{5}$ (19) and $\mathrm{Rb}_{2} \mathrm{LiFeF}_{6}$ (20), or 192.9 pm for SrFeF_{5} (21).

The mean distance $\mathrm{Mn}-\mathrm{F}=211.6 \mathrm{pm}$ in $\mathrm{BaMnFeF}_{7}$ is very close to the value of 212.2 pm given for the rutile MnF_{2} (17), but significantly longer than in $\mathrm{Na}_{2} \mathrm{MnFeF}_{7}$ and $\mathrm{Na}_{2} \mathrm{MnVF}_{7}$ (3) (208.0 and 207.4 pm , resp.). The difference may be caused by an overall
expanding effect of edge-sharing, which does not occur in the weberites.

As may be seen from Table III, a distortion of the octahedra in $\mathrm{BaMnFeF}_{7}$ is reflected even more than in the range of $M-\mathrm{F}$ distances, in deviations of the angles $\mathrm{F}-M-\mathrm{F}$ from 90 and 180° resp., up to about 10%. The fluorine bridging angles, important with respect to magnetic superexchange interactions in the antiferromagnetic compound (8,9), are also remarkably low. The $\mathrm{Mn}-\mathrm{F}-\mathrm{Mn}$ angle of 100.2° in $\mathrm{BaMnFeF}_{7}$ compared to 128.8° in $\mathrm{Na}_{2} \mathrm{MnFeF}_{7}$ is, of course, a consequence of the edge-sharing in the barium compound. But also the Mn-F-Fe bridges in it, which range from 126.8 to 133.7° (average 130.4°), are significantly more bent than in the sodium compound (135.3 to 144.8°, average 138.5°). This difference may account for the lower temperature of magnetic order, $T_{\mathrm{N}}=$ 85(2) K in $\mathrm{BaMnFeF}_{7}$, compared to 94(1) K in $\mathrm{Na}_{2} \mathrm{MnFeF}_{7}(8,9)$.

The barium ions in the $\mathrm{BaMnFeF}_{7}$ structure have an irregular 12-coordination with a mean distance $\mathrm{Ba}-\mathrm{F}=290.5 \mathrm{pm}$. In the distorted cuboctahedron of BaGaF_{5} a value of 288.2 pm has been found (22), similar to 289.0 pm in the distorted icosahedral coordination of barium in the $\mathrm{BaLiCrF}_{6}$ structure (23).

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support of this work.

References

[^2]2. R. Haegele, W. Verscharen, D. Babel, J.-M. Dance, and A. Tressaud, J. Solid State Chem. 24, 77 (1978).
3. W. Verscharen and D. Babel, J. Solid State Chem. 24, 405 (1978).
4. J. Ravez, R. de Pape, and P. Hagenmuller, Bull. Soc. Chim. Fr. 4375 (1967).
5. A. de Kozak and M. Samouël, Rev. Chim. Miner. 15, 268 and 406 (1978).
6. H. G. von Schnering, Z. Anorg. Allg. Chem. 353, 13 (1967).
7. R. Domesle and R. Hoppe, Angew. Chem. (Internat. Ed.) 19, 489 (1980).
8. H. Holler, Diplomarbeit, University of Marburg (1980).
9. D. Babel, H. Holler, A. de Kozak, and M. Samouël, Paper presented at the 7th European Symposium on Flourine Chemistry, September 15-19, Venice (1980).
10. J. Pebler, K. Schmidt, D. Babel, and W. Verscharen, Z. Naturforsch. B 32, 369 (1977).
1/. U. Müller, W. Massa, and R. Schmidt, STRUX, Program system for handling diffractometer data, Marburg, (1979).
12. R. Schmidt, ABSCOR, Program for generating absorption corrected data, Marburg (1979).
13. G. M. Sheldrick, SHELX - 76, Program for crystal structure determination, Cambridge (1976).
14. D. T. Cromer and J. B. Mann, Acta Crystallogr. A 24, 321 (1968).
15. "International Tables for X-Ray Crystallography," Vol. I. Kynoch Press, Birmingham (1969).
16. W. H. Zachariasen, Acta Crystallogr. 16, 1139 (1963).
17. W. H. Baur, Acta Crystallogr. 11, 488 (1958).
18. D. Babel, F. Wall, and G. Heger, Z. Naturforsch. B 29, 139 (1974).
19. M. Vlasse, G. Matejka, A. Tressaud, and B. M. Wanklyn, Acta Crystallogr. B 33, 3377 (1977).
20. W. Massa and D. Babel, Z. Anorg. Allg. Chem. 469, 75 (1980).
21. R. von der Mühll, F. Dauth, and J. Ravez, J. Solid State Chem. 8, 206 (1973).
22. R. Domesle and R. Hoppe, Rev. Chim. Miner. 15, 439 (1978).
23. D. Babel, Z. Anorg. Allg. Chem. 406, 23 (1974).

[^0]: * Author to whom correspondence should be addressed.

[^1]: ${ }^{a}$ Anisotropic temperature factors correspond to B in $\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)$ with $B_{i j}$ given in $10^{-20} \mathrm{~m}^{2}$. The extinction parameter in F_{c} (corr.) $=F_{\mathrm{c}}(1-\epsilon F \cdot / \sin \theta)$ refined to $\epsilon=5.73 \times 10^{-7}$ and the proportionality factor for the weights $w=k / \sigma^{2}\left(F_{0}\right)$ to $k=0.594$.

[^2]: 1. E. Herdtweck and D. Babel, Z. Kristallogr. 153, 189 (1980).
